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We present a new algorithm to numerically simulate two-dimensional viscous
incompressible flows with moving interfaces. The motion is updated in time by using
the backward difference formula through an iterative procedure. At each iteration, the
pseudo-spectral technique is applied in the horizontal direction. The resulting semi-dis-
cretized equations constitute a boundary value problem in the vertical coordinate which
is solved by decoupling growing and decaying solutions. Numerical tests justify that this
method achieves fully second-order accuracy in both the temporal variable and vertical
coordinate. As an application of this algorithm, we study the motion of Stokes waves in
the presence of viscosity. Our numerical results are consistent with the recently published
asymptotic solution for Stokes waves in slightly viscous fluids.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Viscous incompressible flows with interfaces occur in a wide variety of physical phenomena and a large number of tech-
nological processes. Consequently, numerical simulations to these problems have been making significant strides in many
disciplines in science and engineering such as fluid dynamics, geophysics, oceanography, material science and mechanical
engineering [8,25]. Mathematically, the motion is governed by the incompressible Navier–Stokes equations together with
interfacial conditions [6]. There are two major difficulties associated with the numerical study of such problems. First, the
incompressibility condition has to be satisfied (somehow in an implicit manner) at all times [15]. Second, the domain of
interest contains an unknown interface which evolves in time and which must be determined as part of the solution. The
interface plays a major role in defining the system and it is crucial to have an accurate representation of it.

Several numerical methods have been developed for tracking or capturing the interfacial motion. Among the most pop-
ular ones are the volume-of-fluid (VOF), level set and boundary integral approaches. The VOF methods have been in use for
several decades. Early work includes the SLIC algorithm of Noh and Woodward [27] and the SOLA-VOF algorithm of Hirt and
Nicols [17]. Since then, significant progress has been made on VOF methods and a review of recent work can be found in [32].
In the VOF formulation, a volume fraction function C is defined and it satisfies an advection equation. At each time, the values
of C are used to reconstruct an approximation to the interface and this approximate interface is then used to update the vol-
ume fractions at the next time. VOF methods provide a simple way to handle the topological changes of the interface and are
relatively easy to extend from two-dimensional to three-dimensional domains. However, these methods in general have dif-
ficulties in resolving the small structure of the interface, and are not good at capturing the fine-scale boundary layers [35].
The level set approach was first proposed by Osher and Sethian [29] and has since been widely applied to many interfacial/
free-surface problems [35]. In these methods, a level set function / is introduced such that its initial value gives the shortest
distance between each point and the initial interface. The function / then evolves in response to the propagation of the inter-
. All rights reserved.
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face and, at anytime, the zero level set / ¼ 0 gives exactly the location of the interface. These methods, like the VOF, do not
require special procedures to treat topological changes of the interface and are relatively simple to generalize to three-
dimensional problems. The disadvantages, however, are that level set methods, without further modifications, have inherent
numerical dissipation which will smooth the interface and lead to non-physical loss of mass. The boundary integral methods
were developed for computing inviscid potential flows, and notable work in this category was made by Longuet-Higgins and
Cokelet [26], Vinje and Brevig [39], Baker et al. [5], etc. In the boundary integral formulation, Laplace’s equation is solved by
using Green’s functions, leading to Fredholm integral equations of the second kind. The dynamic and kinematic surface con-
ditions are integrated to update the interface at each time. A distinct advantage of these methods is that the space dimension
of the problem is reduced by one. Hence they offer an efficient way for the computation of inviscid and irrotational flows.
Unfortunately, these methods are not applicable to general viscous motion. In addition, there are some other well known
methods such as marker-and-cell [16,43], front tracking [14], phase field [37] and immersed interface methods
[19,22,24], which have also achieved much success in multi-phase flow simulations. All these methods have their own
strength and weakness, and a perfect approach does not yet exist.

The main purpose of the current work is to perform an accurate study on interfacial motion between two slightly viscous
fluids, such as air and water. Despite the ubiquitous presence and importance of air–water systems, understanding of the
viscous effects on water waves remains limited at present, due to the nonlinear phenomenon implicit in both air flow
and water wave evolution [4]. The challenge in numerical study of such viscous effects is the demand for an algorithm which
captures the many spatial scales on the water surface and which does not introduce numerical smoothing that can mask the
true effects of viscosity. Those methods summarized above do not appear optimal to meet this demand.

In this paper, we present a numerical algorithm with high accuracy to simulate the two-dimensional viscous incompress-
ible flows with moving interfaces. Since our focus is the study of viscous effects, we may reasonably assume that the inter-
face remains single-valued and no dramatic change occurs for its topology. We then introduce new coordinates, referred to
as logical coordinates, to map the interface into a coordinate line which enables us to work on a rectangular domain instead
of the deformed geometry. The backward difference formula (BDF) [1] combined with an iterative procedure are applied for
the evolution of the interface to ensure time-stepping stability. To perform the space discretization in the horizontal direc-
tion, X, the Fourier transform and pseudo-spectral technique [28,30] are applied under the assumption that the solutions are
periodic in X. Then we write the semi-discretized equations as a first-order ODE system with respect to the vertical coordi-
nate, Z. Together with interfacial conditions and far-field boundary conditions, they form a boundary value problem in Z
which is solved by decoupling growing and decaying solutions. The incompressibility condition is treated as one equation
in the ODE system, so that it is automatically satisfied at each time step. The method achieves uniform order of accuracy
for the velocities, the pressure and the interface profile: second-order for the temporal variable and vertical coordinate,
and spectral accuracy for the horizontal coordinate. In addition, this algorithm can be easily applied in parallel computation,
making large-scale simulations possible.

As an application of this numerical approach, we study the viscous effects on a special type of traveling waves, the Stokes
waves [36], in the present paper. Stokes waves are nonlinear, periodic and steady progressive free-surface or interfacial mo-
tions. The study of Stokes waves in inviscid fluids is one of the oldest in the field of mathematical fluid mechanics and a large
body of work has been devoted to it. Stokes [36] was the first to systematically study the properties of surface water waves
by using the technique of series expansion named the Stokes’ expansion. Levi Civita [23] proved the convergence of Stokes’
expansion for sufficiently small waves. De [11] published a fifth-order solution to general water depth. Schwartz [33,34] cal-
culated the expansion to extremely high orders by using the digital computer to perform the coefficient arithmetic. Tsuji and
Nagata [38] and Holyer [18] extended the Stokes’ expansion to the interfacial waves moving between two fluids of different
densities. All the aforementioned work was concerned with inviscid fluids. Recently, Wang [40] proposed an expansion form,
based on an asymptotic analysis, for Stoke waves in the presence of small viscosity. The asymptotic form shows that the ef-
fects of viscosity can be approximated by the decay of the expansion parameter in the inviscid Stokes’ expansion. This result
is numerically verified in the present work. By computing the motion of Stokes waves sufficiently in time, we are able to
conduct a careful numerical analysis of the viscous effects on wave motion. In particular, the decay rates for principal wave
modes and the relationship between different modes in the course of viscous damping are thoroughly discussed. To our best
knowledge, such direct numerical simulation result on viscous Stokes waves is the first of its kind.

The remaining part of this paper is organized as follows. In Section 2, we describe in detail the numerical method for com-
puting two-dimensional viscous incompressible flows with interfaces. In Section 3, we provide the computational results to
demonstrate the algorithm. Two test examples serve for the numerical verification of accuracy, followed by a brief discussion
of the parallel implementation of the numerical algorithm. Then the simulation results for viscous Stokes waves are pre-
sented and thoroughly discussed. Finally, conclusions are made in Section 4.

2. Numerical algorithm

2.1. Basic formulation

Let us denote the spatial coordinates by ðx; zÞ, the temporal coordinate by t, the velocity components by ðu;wÞ, the pres-
sure by p, the density by q, the dynamic viscosity by l and the gravitational acceleration by g. The motion in each of the two
fluids is described by the incompressible Navier–Stokes equations
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qut þ quux þ qwuz ¼ �Px þ lðuxx þ uzzÞ; ð1Þ
qwt þ quwx þ qwwz ¼ �Pz þ lðwxx þwzzÞ; ð2Þ
ux þwz ¼ 0; ð3Þ
where P ¼ pþ qgz is referred to as the hydrodynamic pressure. Eqs. (1)–(3) hold in both the upper and lower fluids, and
their solutions are connected through the interfacial conditions, to be provided in Eqs. (6)–(8). In addition, we will assume
that solutions are periodic in the horizontal direction, and exponentially decay away from the interface.

Let us represent the interface in the form
ðx; zÞ ¼ ðx;hðx; tÞÞ: ð4Þ
The profile of h is determined by the kinematic condition
ht þ uðIÞhx ¼ wðIÞ; ð5Þ
where uðIÞ; wðIÞ are the interfacial velocity components. Due to the continuity of velocity at the interface, we have
uð1Þ ¼ uð2Þ ¼ uðIÞ; wð1Þ ¼ wð2Þ ¼ wðIÞ; ð6Þ
where the superscripts (1) and (2) distinguish the upper and lower domains. Moreover, the balance of stresses provides two
more interfacial conditions [6] and, in two-dimensional case, they yield
ðh2
x � 1Þ lð1Þ uð1Þz þwð1Þx

� �
� lð2Þ uð2Þz þwð2Þx

� �� �
þ 2hx lð1Þ uð1Þx �wð1Þz

� �
� lð2Þ uð2Þx �wð2Þz

� �� �
¼ 0; ð7Þ

ðPð1Þ � Pð2ÞÞ � ghðqð1Þ � qð2ÞÞ þ hx lð1Þ uð1Þz þwð1Þx

� �
� lð2Þ uð2Þz þwð2Þx

� �� �
� 2 lð1Þwð1Þz � lð2Þwð2Þz

� �
� cj ¼ 0; ð8Þ
where c is the surface tension and where j is the mean curvature of the interface,
j ¼ hxx

ð1þ h2
x Þ

3=2 : ð9Þ
2.2. Mapped equations

The evolving interface hðx; tÞ between the two fluids makes the design of accurate numerical methods difficult. To over-
come this difficulty, we map the deformed geometry into a rectangular shape in new, logical coordinates at the cost of
changing the details of the governing equations and the interfacial conditions. Our numerical methods are then constructed
on these mapped equations.

Let us introduce the new coordinates, ðX; Z; sÞ, through the mapping [41]
x ¼ X; ð10Þ
z ¼ FðX; Z; sÞ; ð11Þ
t ¼ s; ð12Þ
where
FðX; Z; sÞ ,
Z þ hðX; sÞ expð�aZÞ; Z P 0;
Z þ hðX; sÞ expðaZÞ; Z 6 0;

�
ð13Þ
where a > 0 is a constant which can be used to adjust the grid spacing near the interface. Clearly, the coordinate line Z ¼ 0
corresponds to the location of the interface z ¼ hðx; tÞ. When far from the interface, Z is relaxing exponentially to the physical
coordinate z so that the far-field boundary conditions can be easily handled.

If we define
G0 ¼
Fs

FZ
; G1 ¼

FX

FZ
; G3 ¼

1
FZ
; ð14Þ
then the transformed derivatives can be calculated by

@

@t
¼ @

@s
� G0

@

@Z
; ð15Þ

@

@x
¼ @

@X
� G1

@

@Z
; ð16Þ

@

@z
¼ G3

@

@Z
; ð17Þ

@2

@x2 ¼
@2

@X2 þ ðG1Þ2
@2

@Z2 � 2G1
@2

@X@Z
þ ½G1ðG1ÞZ � ðG1ÞX �

@

@Z
; ð18Þ

@2

@z2 ¼ ðG3Þ2
@2

@Z2 þ G3ðG3ÞZ
@

@Z
: ð19Þ



J. Wang, G. Baker / Journal of Computational Physics 228 (2009) 5470–5489 5473
Let us further define
g2 ¼ ðG1Þ2 þ ðG3Þ2; g3 ¼ �2G1; g4 ¼ G1
@G1

@Z
þ G3

@G3

@Z
� @G1

@X
: ð20Þ
Then we can write the Laplacian in new variables as
L , @2

@x2 þ
@2

@z2 ¼
@2

@X2 þ g2
@2

@Z2 þ g3
@2

@X@Z
þ g4

@

@Z
: ð21Þ
We note that the coefficients Gi ði ¼ 0;1;3Þ; gi ði ¼ 2;3;4Þ are different in the upper and lower domains.
Now we substitute the transformation rules (15)–(21) for the derivatives directly into the basic equations (1)–(8) to

obtain
us � G0uZ þ uðuX � G1uZÞ þwG3uZ ¼ �
1
q

PX þ
1
q

G1PZ þ mLfug; ð22Þ

ws � G0wZ þ uðwX � G1wZÞ þwG3wZ ¼ �
1
q

G3PZ þ mLfwg; ð23Þ

uX � G1uZ þ G3wZ ¼ 0; ð24Þ
where m ¼ l
q is the kinematic viscosity. The kinematic condition becomes
hs þ uðIÞhX ¼ wðIÞ: ð25Þ
Though there is no change to the velocity interfacial conditions (6), the two stress conditions are now:
lð1Þ Gð1Þ3 uð1ÞZ þwð1ÞX

� �
� lð2Þ Gð2Þ3 uð2ÞZ þwð2ÞX

� �
þ 4hX

h2
X � 1

þ Gð1Þ1

Gð1Þ3

 !
lð1Þ uð1ÞX � Gð1Þ1 uð1ÞZ

� �
� 4hX

h2
X � 1

þ Gð2Þ1

Gð2Þ3

 !
lð2Þ uð2ÞX � Gð2Þ1 uð2ÞZ

� �
¼ 0; ð26Þ

ðPð1Þ � Pð2ÞÞ þ 2� 4h2
X

h2
X � 1

 !
lð1Þ uð1ÞX � Gð1Þ1 uð1ÞZ

� �
� lð2Þ uð2ÞX � Gð2Þ1 uð2ÞZ

� �h i
¼ ghðqð1Þ � qð2ÞÞ þ cj: ð27Þ
We note that in order to obtain (26) and (27), we have eliminated wð1Þz and wð2Þz in Eqs. (7) and (8) by using the incompress-
ibility condition (3). It will be clear soon that such eliminations are necessary to facilitate our numerical formulation.

Before we describe the numerical method in detail, it is best to first summarize the overall strategy. The equations are
written in the form of linear terms and nonlinear terms separately. The second-order backward difference formula (BDF)
[1] is applied to update the motion in time. The method is fully implicit and so require the solution of a nonlinear system
of equations for the unknowns at the new time level. The linear terms thus provide a simple iterative procedure. At each
iterate, the Fourier transform and the pseudo-spectral technique [28,30] are applied in the horizontal direction X, which pos-
sesses periodicity, to achieve spectral accuracy in X. Then a linear system of first-order ODEs with respect to the vertical coor-
dinate, Z, is solved.

As a start, we describe the separation of the equations into linear and nonlinear parts. Let us introduce a new variable
q ¼ uZ . Then we extract the linear parts of these equations and put them to the left-hand sides. All the nonlinear terms as
well as the mapping-associated terms will be collected to the right-hand sides. We have, first of all,
uZ � q ¼ 0: ð28Þ
In what follows we replace uZ by q. From the momentum equation (22) we obtain
us þ
1
q

PX � mðuXX þ qZÞ ¼ Ru , G0qþ 1
q

G1PZ � ½uðuX � G1qÞ þwG3q� þ m½ðg2 � 1ÞqZ þ g3qX þ g4q�: ð29Þ
Next, the incompressibility condition (24) gives
uX þwZ ¼ Rc , G1qþ ð1� G3ÞwZ : ð30Þ
Finally, from the momentum equation (23) we have
ws þ
1
q

PZ � mðwXX þwZZÞ ¼ G0wZ þ
1
q
ð1� G3ÞPZ � ½uðwX � G1wZÞ þwG3wZ � þ m½g2wZZ þ g3wXZ þ g4wZ �wZZ �: ð31Þ
We note that in the linear case, the incompressibility condition implies
wZZ þ qX ¼ 0: ð32Þ
Adding mðwZZ þ qXÞ to both sides of (31), we obtain
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ws þ
1
q

PZ � mðwXX � qXÞ ¼ Rw , G0wZ þ
1
q
ð1� G3ÞPZ � ½uðwX � G1wZÞ þwG3wZ � þ m½g2wZZ þ g3wXZ þ g4wZ þ qX �:

ð33Þ
We will use (33) to replace (31) as one of the governing equations. Similarly, the two stress conditions (26) and (27) may be
expressed as
lð1Þ qð1Þ þwð1ÞX

� �
� lð2Þ qð2Þ þwð2ÞX

� �
¼ S1 , lð1Þ 1� Gð1Þ3

� �
qð1Þ � lð2Þ 1� Gð2Þ3

� �
qð2Þ � 4hX

h2
X � 1

þ Gð1Þ1

Gð1Þ3

 !
lð1Þ uð1ÞX � Gð1Þ1 qð1Þ

� �
þ 4hX

h2
X � 1

þ Gð2Þ1

Gð2Þ3

 !
lð2Þ uð2ÞX � Gð2Þ1 qð2Þ

� �
; ð34Þ

Pð1Þ � Pð2Þ þ 2 lð1Þuð1ÞX � lð2Þuð2ÞX

� �
¼ S2 , ghðqð1Þ � qð2ÞÞ þ cjþ 2 lð1ÞGð1Þ1 qð1Þ � lð2ÞGð2Þ1 qð2Þ

� �
þ 4h2

X

h2
X � 1

lð1Þ uð1ÞX � Gð1Þ1 qð1Þ
� �

� lð2Þ uð2ÞX � Gð2Þ1 qð2Þ
� �h i

; ð35Þ
while the other two interfacial conditions (6) and the kinematic condition (25) remain unchanged.

2.3. Time marching

Due to the strong nonlinearity of the problem and the incompressibility constraint on the velocity field, an explicit time-
marching method, such as the Adams-Bashforth [31], would easily cause numerical instability or produce non-physical solu-
tion [15]. Hence, implicit methods and fractional step techniques are commonly used in the numerical simulation of the
incompressible Navier–Stokes equations. The projection approach [7,9,12], for example, is one of the most popular fractional
step methods and has been widely applied to compute Navier–Stokes flows. In the projection formulation, an intermediate
velocity is first calculated which does not necessarily satisfy the incompressibility condition; it is then projected into a diver-
gence-free field to obtain the correct velocity. However, when applying the projection method to our two-phase flow prob-
lem, we encountered difficulty in handling the physical interfacial conditions. We have, therefore, adopted a fully implicit
method, the backward difference formula (BDF), accomplished in an iterative manner. The details are described below.

Suppose we know the numerical solution at the time step n; fhn
;un; qn;wn; Png, and we want to advance the solution to

the next time step nþ 1; fhnþ1
;unþ1; qnþ1;wnþ1; Pnþ1g.

The BDF method applied to Eqs. (28)–(30) and (33) yields
unþ1
Z � qnþ1 ¼ 0; ð36Þ

3unþ1 � 4un þ un�1

2Ds
þ 1

q
Pnþ1

X � mðunþ1
XX þ qnþ1

Z Þ ¼ Rnþ1
u ; ð37Þ

wnþ1
Z þ unþ1

X ¼ Rnþ1
c ; ð38Þ

3wnþ1 � 4wn þwn�1

2Ds
þ 1

q
Pnþ1

Z � mðwnþ1
XX � qnþ1

X Þ ¼ Rnþ1
w ; ð39Þ
where Ru; Rc and Rw are defined in Eqs. (29), (30) and (33), respectively, and contain all the nonlinear terms. In addition, the
evolution of the interface is approximated by
3hnþ1 � 4hn þ hn�1

2Ds
¼ ðwðIÞ � uðIÞhXÞnþ1; ð40Þ
while the interfacial conditions are approximated by
ðuð1Þ � uð2ÞÞnþ1 ¼ 0; ð41Þ

lð1Þ qð1Þ þwð1ÞX

� �
� lð2Þ qð2Þ þwð2ÞX

� �� �nþ1
¼ Snþ1

1 ; ð42Þ

ðwð1Þ �wð2ÞÞnþ1 ¼ 0; ð43Þ

Pð1Þ � Pð2Þ þ 2 lð1Þuð1ÞX � lð2Þuð2ÞX

� �� �nþ1
¼ Snþ1

2 ; ð44Þ
where S1; S2 are defined in Eqs. (34) and (35).
Unfortunately, the equations for the updated solution are nonlinear and challenging to solve in general. A simple iterative

method is obtained by evaluating all nonlinear terms with a previous guess. Specifically, let fhðn;m�1Þ
; uðn;m�1Þ; qðn;m�1Þ;

wðn;m�1Þ; Pðn;m�1Þg be the solution at the ðm� 1Þth iteration, where
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fhðn;0Þ;uðn;0Þ; qðn;0Þ;wðn;0Þ; Pðn;0Þg , fhn
; un; qn;wn; Png:
The next iterate is obtained as follows.
First we update the interface h by
3hðn;mÞ � 4hn þ hn�1

2Ds ¼ wðIÞ � uðIÞhX
� �ðn;m�1Þ

: ð45Þ
Once hðn;mÞ is known, the mappings (10)–(12) are evaluated and the coefficients Gðn;mÞi ði ¼ 0;1;3Þ; gðn;mÞi ði ¼ 2;3;4Þ are read-
ily calculated. Then we compute fuðn;mÞ; qðn;mÞ;wðn;mÞ; Pðn;mÞg by
uðn;mÞZ � qðn;mÞ ¼ 0; ð46Þ
3uðn;mÞ � 4un þ un�1

2Ds
þ 1

q
Pðn;mÞX � m uðn;mÞXX þ qðn;mÞZ

� �
¼ Rðn;m�1Þ

u ; ð47Þ

wðn;mÞZ þ uðn;mÞX ¼ Rðn;m�1Þ
c ; ð48Þ

3wðn;mÞ � 4wn þwn�1

2Ds
þ 1

q
Pðn;mÞZ � m wðn;mÞXX � qðn;mÞX

� �
¼ Rðn;m�1Þ

w ; ð49Þ
with the corresponding interfacial conditions
ðuð1Þ � uð2ÞÞðn;mÞ ¼ 0; ð50Þ

lð1Þ qð1Þ þwð1ÞX

� �
� lð2Þ qð2Þ þwð2ÞX

� �� �ðn;mÞ
¼ Sðn;m�1Þ

1 ; ð51Þ

ðwð1Þ �wð2ÞÞðn;mÞ ¼ 0; ð52Þ

Pð1Þ � Pð2Þ þ 2 lð1Þuð1ÞX � lð2Þuð2ÞX

� �� �ðn;mÞ
¼ Sðn;m�1Þ

2 : ð53Þ
We set the stopping criterion of the iterations as
khðn;mÞ � hðn;m�1Þk2

khðn;m�1Þk2

þ ku
ðn;mÞ � uðn;m�1Þk2

kuðn;m�1Þk2
þ kq

ðn;mÞ � qðn;m�1Þk2

kqðn;m�1Þk2
þ kw

ðn;mÞ �wðn;m�1Þk2

kwðn;m�1Þk2
þ kP

ðn;mÞ � Pðn;m�1Þk2

kPðn;m�1Þk2

< E; ð54Þ
where E is some tolerance and where the L2-norm k � k2 is taken at all the grid points. Once (54) is satisfied, we set
fhnþ1
;unþ1; qnþ1;wnþ1; Pnþ1g ¼ fhðn;mÞ;uðn;mÞ; qðn;mÞ;wðn;mÞ; Pðn;mÞg
and the advancement of solution to the time step nþ 1 is complete. Clearly, when convergence is achieved, we have effec-
tively applied the BDF scheme to (45)–(49) and treated all the interfacial conditions in a fully implicit manner.

Next, we turn to the spatial discretization which allows the construction of the mth iterate.

2.4. The Fourier transform

Since we have assumed all the solutions are periodic in the X-direction, we can take advantage of the discrete Fourier
transform to achieve spectral accuracy for X. Based on the method of marching forward in time, we apply the discrete Fourier
transform at each iteration to (45)–(49) as well as the corresponding interfacial conditions. For the left-hand sides of these
equations, we simply replace @

@x by ik, @2

@x2 by �k2 and the physical variables fh;u; q;w; Pg by their kth Fourier coefficients,
where k ¼ �K;�K þ 1; . . . ;0;1; . . . ;K � 1. For the right-hand sides containing all the nonlinear and mapping-associated
terms, we carry out the well-known pseudo-spectral approach [30] which consists of three steps:

1. use the inverse discrete Fourier transform to recover the physical variables;
2. evaluate the expressions in physical space;
3. use the discrete Fourier transform to obtain the Fourier coefficients of the expressions.

From now on the subscript k will denote the kth Fourier coefficient of the physical variables. After applying the Fourier
transform, the iterative formula (46)–(49) can be written as a four-by-four linear system of first-order ODEs with respect to Z
d
dZ

Yk ¼ BkYk þ Rk; ð55Þ
where
Yk , uðn;mÞk ; qðn;mÞk ;wðn;mÞk ; Pðn;mÞk

� �T
;

Bk ,

0 1 0 0
k2 þ 3

2mDs 0 0 1
qm ik

�ik 0 0 0
0 �qmik �q mk2 þ 3

2Ds

� �
0

266664
377775;

ð56Þ
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and where Rk is the kth Fourier coefficient of the following vector which contains all the explicit terms,
0
�1
m Rðn;m�1Þ

u þ 2un

Ds � un�1

2Ds

h i
Rðn;m�1Þ

c

q Rðn;m�1Þ
w þ 2wn

Ds � wn�1

2Ds

h i

0BBBBB@

1CCCCCA: ð57Þ
The interfacial conditions for the system (55) are given by
Jð1Þk Y ð1Þk � Jð2Þk Y ð2Þk ¼ rk; ð58Þ
where
Jk ,

1 0 0 0
0 l ikl 0
0 0 1 0

2ikl 0 0 1

26664
37775; rk ,

0
Sðn;m�1Þ

1

� �
k

0
Sðn;m�1Þ

2

� �
k

0BBBB@
1CCCCA: ð59Þ
We must now construct numerical solutions to the ODE system (55) subject to the interfacial conditions (58) and the far-
field conditions (decaying solutions).

2.5. The boundary value problem

We notice that the four eigenvalues of the matrix Bk in (56) are given by
k1 ¼ k; k2 ¼ �k; k3 ¼ wðkÞ; k4 ¼ �wðkÞ; ð60Þ
where
wðkÞ ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 3

2mDs

r
: ð61Þ
The shooting method is the simplest to apply but there is a difficulty in the choice of shooting parameters for decaying solu-
tions. Further, the rapid exponential growth of the solutions typically causes blow up prior to the numerical solution reach-
ing the interface.

The remedy is to diagonalize the system (55) prior to applying the shooting method. The eigenvectors associated with the
four eigenvalues in (60) are
e1 ¼

k

k2

�ik
3qi
2Ds

0BBB@
1CCCA; e2 ¼

1
�k

i
3qi

2kDs

0BBB@
1CCCA; e3 ¼

wðkÞ
w2ðkÞ
�ik

0

0BBB@
1CCCA; e4 ¼

1
�wðkÞ

ik
wðkÞ

0

0BBB@
1CCCA ð62Þ
for k – 0, and
e1 ¼

0
0
0
1

0BBB@
1CCCA; e2 ¼

0
0
� Ds

2q

0

0BBB@
1CCCA; e3 ¼

wð0Þ
w2ð0Þ

0
0

0BBB@
1CCCA; e4 ¼

1
�wð0Þ

0
0

0BBB@
1CCCA ð63Þ
for k ¼ 0. Define the matrix
Qk ¼ ðe1; e2; e3; e4Þ ð64Þ
and introduce the transformation
Yk ¼ Qk
eY k: ð65Þ
Then the system (55) becomes
d
dZ
eY k ¼ eBk

eY k þ eRk; ð66Þ
where eRk , Q�1
k Rk and
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eBk , Q�1
k BkQ k ¼

k
�k

wðkÞ
�wðkÞ

0BBB@
1CCCA; k – 0;

0 1
0

wð0Þ
�wð0Þ

0BBB@
1CCCA; k ¼ 0:

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð67Þ
At the interface, the jump condition (58) becomes
Jð1Þk Q ð1Þk
eY ð1Þk � Jð2Þk Q ð2Þk

eY ð2Þk ¼ rk; ð68Þ
where Jk is defined in (59) and Q k in (64).
Now the system (66) is reduced to four scalar equations in the form of
d
dZ

~y ¼ k~yþ ~r ð69Þ
and we apply the trapezoidal rule, which is second-order accurate in DZ, to each of them to obtain
1� DZ
2

k


 �
~yjþ1 � 1þ DZ

2
k


 �
~yj ¼

DZ
2
ð~rj þ ~rjþ1Þ: ð70Þ
To ensure numerical stability, we have to consider (70) in two different cases. If k < 0, we use
~yjþ1 ¼
1

1� DZ
2 k

� � 1þ DZ
2

k


 �
~yj þ

DZ
2
ð~rj þ ~rjþ1Þ

� 

; j ¼ �J;�J þ 1; . . . ;�1: ð71Þ
That means we start from the bottom, where ~y�J is known, and apply (71) with increasing j until we reach the interface j ¼ 0.
If k > 0, we use
~yj ¼
1

1þ DZ
2 k

� � 1� DZ
2

k


 �
~yjþ1 �

DZ
2
ð~rj þ ~rjþ1Þ

� 

; j ¼ J � 1; J � 2; . . . ;0: ð72Þ
That means we start from the top, where ~yJ is known, and apply (72) with decreasing j until we reach the interface j ¼ 0.
We apply this one-way shooting method in three steps. First, we shoot from the top and bottom using only those ODEs

that have positive and negative eigenvalues, respectively. Consequently, some of the unknowns are now determined, in par-
ticular, at the interface. Second, we use the known quantities to write the interfacial conditions as a linear system of alge-
braic equations for the remaining unknowns. Once this algebraic system has been solved, we use the known values at the
interface to complete the third step. We shoot from the interface upwards and downwards using those ODEs that have neg-
ative and positive eigenvalues, respectively.

The details of this procedure for the case k > 0 are as follows. From (67) we see the two positive eigenvalues correspond
to the first and the third components of eY k, denoted by ~y1 and ~y3, respectively. They are determined by the recursion (72).
The two negative eigenvalues correspond to the second and the fourth components of eY k, denoted by ~y2 and ~y4, respectively.
They are determined by the recursion (71). At the interface j ¼ 0, (68) gives
Jð1Þk Q ð1Þk

~yð1Þ1

~yð1Þ2

~yð1Þ3

~yð1Þ4

0BBBBB@

1CCCCCA
j¼0

� Jð2Þk Q ð2Þk

~yð2Þ1

~yð2Þ2

~yð2Þ3

~yð2Þ4

0BBBBB@

1CCCCCA
j¼0

¼ rk; ð73Þ
where ~yð1Þ1 ; ~yð1Þ3 ; ~yð2Þ2 ; ~yð2Þ4

n o
j¼0

are already known. Hence, (73) forms a four-by-four linear system for the unknowns
~yð1Þ2 ; ~yð1Þ4 ; ~yð2Þ1 ; ~yð2Þ3

n o
j¼0

. Once they are solved, we can continue the computation for ~y1; ~y3 by following (72) with the indices
shifted to: j ¼ �1;�2; . . . ;�J, and for ~y2; ~y4 by following (71) with the indices shifted to: j ¼ 0;1; . . . ; J � 1.

The situation is a little different in the case k ¼ 0 since we have two zero eigenvalues, corresponding to ~y1 and ~y2. More-
over, the calculation of ~y1 requires ~y2 (see Eq. (67) ). Therefore, when applying the shooting method, we always shoot from
the same place and go through the same direction (either upwards or downwards) for the two ODEs that have zero eigen-
values. There is no change for the other parts in this method.

3. Numerical results

In this section, we present computational results by applying the numerical method described before. We will first
use two examples to verify the order of accuracy. The tests will be conducted on the order of the time marching and
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the discretization in the Z-direction, as there is little doubt about the spectral accuracy in the X-direction where the Fou-
rier transform is applied. Next, we will briefly discuss the parallel implementation of the algorithm, and present some
test results for the performance. Then, we will focus our attention on the numerical study of viscous effects on Stokes
waves. Simulation results for Stokes waves with various amplitudes and viscosities will be presented and carefully
discussed.

3.1. One-phase flow test

As the first example, we test the numerical accuracy by computing exact solution to the Navier–Stokes equations in the
one-fluid case. An exact solution to the incompressible Navier–Stokes equations (1)–(3) which is periodic in the horizontal
direction and exponentially decaying in the vertical direction, is given by
Table 1
One-ph
indicate

N

40
80

160
u ¼ t sinð2xÞe�2z;

w ¼ t cosð2xÞe�2z;

P ¼ q
2
ðcosð2xÞe�2z � t2e�4zÞ;

ð74Þ
We define the spatial domain as
fðx; zÞj0 6 x 6 2p; hðx; tÞ 6 z 6 1g; ð75Þ
where the wavy bottom, h, is set as
hðx; tÞ ¼ 0:1 sinðx� tÞ: ð76Þ
Although there is no interface in this case, the mappings (10)–(12) can be readily formed (for Z P 0 only) based on the mov-
ing boundary hðx; tÞ. Consequently, all parts except the interfacial conditions, in our numerical formulation can be readily
applied. Hence, the mapped equations, the Navier–Stokes solver and the formulation as a boundary value problem in Z will
be thoroughly tested, whereas the numerical treatment of the interfacial conditions will not be tested. The initial and the
boundary values for u; w; P are taken from the exact solution (74).

We conduct this test (as well as next one) on a 2.4 GHz Xeon dual-processor workstation. We perform the computation
for q ¼ 1:0; l ¼ 0:313 (corresponding to a Reynolds number of 100) and run the codes until s ¼ 0:4. We use 32 points in the
X-direction so that the errors associated with DX is negligible. Let N be the number of time steps and J the number of points
in the Z-direction. We make consecutive runs with N and J doubled each time, and the results are presented in Table 1. Here
Eðu;N; JÞ denotes the L2-norm of the errors for u with the resolution of N time steps and J points in the Z-direction, and
Rðu;N; JÞ denotes the quantity
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eðu;N=2; J=2Þ
Eðu;N; JÞ

s
;

which indicates the order of accuracy for u. Similar notations hold for Eðw;N; JÞ; Rðw;N; JÞ and EðP;N; JÞ; RðP;N; JÞ. The results
clearly indicate the second-order convergence in both Ds and DZ for the velocity and pressure.

3.2. Two-phase linear flow test

Due to the presence of the nonlinear interfacial conditions (6)–(8), an analytical form of solutions is not available for gen-
eral two-phase flows. Nevertheless, there are exact solutions for the corresponding linearized problem. If we use a linearized
solution as the initial condition and set the amplitude of the interface h small enough, then the influence of the nonlinear
terms in both the governing equations and interfacial conditions becomes unimportant since they are in the order of
Oðh2Þ. Consequently, we expect the solution of our nonlinear problem will be very close to that of the linear one. Hence,
in this example we use a linearized solution as the reference to test the accuracy. At the same time, the numerical treatment
of the interfacial conditions will be tested at least in the linear level.
ase flow test results. N and J are the numbers of time steps and spatial points, respectively. Eð�;N; JÞ denotes the L2-norm of the errors and Rð�;N; JÞ
s the order of convergence.

J Eðu;N; JÞ ðRðu;N; JÞÞ Eðw;N; JÞ ðRðw;N; JÞÞ EðP;N; JÞ ðRðP;N; JÞÞ

40 1:824� 10�5 (–) 6:069� 10�6 (–) 4:469� 10�5 (–)
80 4:680� 10�6 (1.97) 1:512� 10�6 (2.00) 1:207� 10�5 (1.92)

160 1:194� 10�6 (1.98) 3:833� 10�7 (1.99) 3:018� 10�6 (2.00)
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Solutions for the linear motion of interfacial flows are available in [10], and most recently in [42]. They take the form of
Table 2
Test res
norm o

N

40
80

160
320
uk

wk

Pk

hk

0BBB@
1CCCA ¼

u0
k

w0
k

P0
k

h0
k

0BBBB@
1CCCCAerðkÞt; ð77Þ
where the subscript k specifies the kth Fourier coefficient and the superscript 0 indicates the initial state. The value of rðkÞ is
found through the dispersion relation
qð1Þ
ffiffiffiffiffiffiffiffi
mð1Þ
p

Xð1Þ þ
ffiffiffiffiffiffiffiffi
mð1Þ
p

k
� �

þ qð2Þ
ffiffiffiffiffiffiffiffi
mð2Þ
p

Xð2Þ þ
ffiffiffiffiffiffiffiffi
mð2Þ
p

k
� �h i

� ½ðqð2Þ � qð1ÞÞgkþ ck3 þ ðqð2Þ þ qð1ÞÞr2ðkÞ�

þ 4 qð1Þ
ffiffiffiffiffiffiffiffi
mð1Þ
p

Xð1Þ þ qð2Þmð2Þk
� �

qð2Þ
ffiffiffiffiffiffiffiffi
mð2Þ
p

Xð2Þ þ qð1Þmð1Þk
� �

rðkÞk ¼ 0; ð78Þ
where Xð1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðkÞ þ mð1Þk2

q
; Xð2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðkÞ þ mð2Þk2

q
. Newton’s method is applied to numerically find the roots of the nonlin-

ear equation (78). Once rðkÞ is determined, the initial values u0
k ;w

0
k ; P

0
k ;h

0
k

n o
are determined as follows.

In the upper domain:
w0
k ¼ A expð�jkjzÞ þ B exp � Xð1Þffiffiffiffiffiffiffiffi

mð1Þ
p z

 !
;

u0
k ¼ �

ijkj
k

A expð�jkjzÞ � i
k

Xð1Þffiffiffiffiffiffiffiffi
mð1Þ
p B exp � Xð1Þffiffiffiffiffiffiffiffi

mð1Þ
p z

 !
;

P0
k ¼

qð1ÞrðkÞ
jkj A expð�jkjzÞ:

ð79Þ
In the lower domain:
w0
k ¼ C expðjkjzÞ þ D exp

Xð2Þffiffiffiffiffiffiffiffi
mð2Þ
p z

 !
;

u0
k ¼

ijkj
k

C expðjkjzÞ þ i
k

Xð2Þffiffiffiffiffiffiffiffi
mð2Þ
p D exp

Xð2Þffiffiffiffiffiffiffiffi
mð2Þ
p z

 !
;

P0
k ¼ �

qð2ÞrðkÞ
jkj C expðjkjzÞ:

ð80Þ
For the interface:
h0
k ¼

a
2
; ð81Þ
where a is a small real constant that specifies the initial wave amplitude. The coefficients A; B; C; D are determined by a and
rðkÞ, and their values can be found in [42].

In this test, we pick k ¼ 1; a ¼ 0:01, and consider an air–water system with the physical parameters:
qð1Þ ¼ 0:0012 g=cm3; lð1Þ ¼ 1:8� 10�4 g=ðcm sÞ; qð2Þ ¼ 1:0 g=cm3; lð2Þ ¼ 1:1� 10�2 g=ðcm sÞ, which correspond to a Rey-
nolds number of 2846. The surface tension is set to zero in this test. The domain of computation is chosen to be a rectangle
fðx; zÞj0 6 x 6 2p; �H 6 z 6 Hg ð82Þ
with H ¼ 1. The initial conditions and the boundary values at the two ends ðZ ¼ �HÞ are taken from the linear solution. We
advance the solution until s ¼ 0:4, using (fixed) 32 points in the X-direction, 2J points in the Z-direction and N steps in time.
Again we keep doubling N and J to check the error pattern, and the results are shown in Table 2 where the quantities E and R
have the same meaning as defined before. We observe bigger numerical errors than those in the first example due to the fact
that we are using an approximate linear solution as the reference. Another reason is that the viscosity is much smaller (or,
ults for the two-phase linear flow without surface tension. N and J are the numbers of time steps and spatial points, respectively. Eð�;N; JÞ denotes the L2-
f the errors and Rð�;N; JÞ indicates the order of convergence.

J Eðu;N; JÞ ðRðu;N; JÞÞ Eðw;N; JÞ ðRðw;N; JÞÞ EðP;N; JÞ ðRðP;N; JÞÞ Eðh;N; JÞ ðRðh;N; JÞÞ

40 3:717� 10�2 (–) 2:220� 10�2 (–) 7:017� 10�1 (–) 1:343� 10�3 (–)
80 1:155� 10�2 (1.79) 6:486� 10�3 (1.85) 2:134� 10�1 (1.81) 4:023� 10�4 (1.83)

160 3:171� 10�3 (1.90) 1:736� 10�3 (1.93) 5:795� 10�2 (1.92) 1:086� 10�4 (1.92)
320 8:093� 10�4 (1.98) 4:406� 10�4 (1.99) 1:475� 10�2 (1.98) 2:761� 10�5 (1.98)
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the Reynolds number is much higher) in the current case, so that higher resolution is required to achieve good accuracy. Nev-
ertheless, the results in Table 2 clearly indicate that second-order convergence for all the flow variables and the interface
profile is approached as the resolution is refined.

We note that in the test presented above, the surface tension is ignored (i.e., c ¼ 0). A similar test can be performed which
is based on the same set-up as above, but includes the physical surface tension (with c ¼ 74 g=s2) to demonstrate the capa-
bility of our method. To calculate the mean curvature j (see Eq. (9)), the surface derivatives hx and hxx are evaluated by the
discrete Fourier transform. The test results are shown in Table 3. We have found that due to the addition of the surface ten-
sion, smaller Dt is needed to maintain good accuracy. Nonetheless, the results again confirm that fully second-order conver-
gence is achieved.

3.3. Parallelization

One advantage of the numerical algorithm described in Section 2 is that it can be easily adapted to parallel computer
architectures. The details are presented below.

Suppose the domain of computation is a rectangle and there are 2K points in the X-direction and 2J points in the Z-
direction. Let M be the number of processors. We use row-wise striped partitioning when updating the solution in time.
Each processor except one, to which we refer as processor 0, is assigned 2J=M rows. Processor 0, instead, contains one
more row which marks the interface. Each processor performs the Fourier transform along the X-direction, calculates
the right-hand side vectors Rk (see Eq. (55)), and prepares the data for the boundary value problem. Then we switch
to column-wise striped partitioning, by way of an all-to-all communication, to solve the boundary value problem (66).
Each processor now handles 2K=M columns and works out the transformed solutions eY k. Finally, we go back to the
row-wise striped partitioning by using the all-to-all communication again and recover the original solutions Yk. That com-
pletes one iteration for marching in time. The major overhead in this parallel algorithm is the switch between row-wise
and column-wise partitioning.

A test of the performance of the parallelization by using MPI [21] is made on an IA-64 Cluster with 900 MHz Itanium-2
processors, for a problem with moderate size: K ¼ 32; J ¼ 1600 and 400 time steps. The CPU time is compared for different
number of processors and in each multi-processor case the CPU time is measured from the beginning of computation until
the last processor finishes execution. We use n to denote the number of processors and TðnÞ the CPU time measured with n
processors. Meanwhile we calculate the speedup SðnÞ ¼ Tð1Þ=TðnÞ and the efficiency EðnÞ ¼ SðnÞ=n. The results are shown in
Table 4 where generally good efficiency is observed. The drop in performance for 32 processors is associated with the fact
K ¼ 32, as communication costs are beginning to be important.

3.4. Viscous Stokes waves simulation

Now we apply the validated algorithm to simulate Stokes waves [13,33,34,36,38] in the presence of viscosity. In what
follows we neglect the surface tension. We consider a two-fluid system in a frame moving with the phase speed c and
use the expansion formula from [38] to obtain the initial condition. The wave profile h can be expanded in a dimensionless
form by a Fourier cosine series
Table 4
Perform

No. of p
CPU tim
Speedu
Efficien

Table 3
Test res
L2-norm

N

160
320
640
h ¼
X1
k¼1

AkðAÞ cos kx; ð83Þ
where A is the amplitude parameter and each coefficient Ak is depending on A. The first five Fourier coefficients are given as,
to the order of OðA5Þ,
ance of parallelization by using MPI. The speedup is defined as SðnÞ ¼ Tð1Þ=TðnÞ and the efficiency is EðnÞ ¼ SðnÞ=n.

rocessors n 1 2 4 8 16 32
e TðnÞ (in s) 1658 876 450 220 114 64

p SðnÞ 1.00 1.89 3.68 7.54 14.54 25.91
cy EðnÞ 1.00 0.95 0.92 0.94 0.91 0.81

ults for the two-phase linear flow with surface tension. N and J are the numbers of time steps and spatial points, respectively. Eð�;N; JÞ denotes the
of the errors and Rð�;N; JÞ indicates the order of convergence.

J Eðu;N; JÞ ðRðu;N; JÞÞ Eðw;N; JÞ ðRðw;N; JÞÞ EðP;N; JÞ ðRðP;N; JÞÞ Eðh;N; JÞ ðRðh;N; JÞÞ

80 3:082� 10�3 (–) 1:710� 10�3 (–) 5:943� 10�2 (–) 1:037� 10�4 (–)
160 7:556� 10�4 (2.02) 4:164� 10�4 (2.03) 1:459� 10�2 (2.02) 2:528� 10�5 (2.03)
320 1:410� 10�4 (2.31) 8:108� 10�5 (2.27) 2:780� 10�3 (2.29) 4:759� 10�6 (2.30)
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A1 ¼ A;

A2 ¼
1
2

qð2Þ � qð1Þ

qð2Þ þ qð1Þ
1þ 17ðqð2ÞÞ2 � 38qð2Þqð1Þ þ 17ðqð1ÞÞ2

12ðqð2Þ þ qð1ÞÞ2
A2

 !
A2
;

A3 ¼
3ðqð2ÞÞ2 � 10qð2Þqð1Þ þ 3ðqð1ÞÞ2

8ðqð2Þ þ qð1ÞÞ2
A3

þ 459ðqð2ÞÞ4 � 2468ðqð2ÞÞ3qð1Þ þ 4130ðqð2ÞÞ2ðqð1ÞÞ2 � 2468qð2Þðqð1ÞÞ3 þ 459ðqð1ÞÞ4

384ðqð2Þ þ qð1ÞÞ4
A5
;

A4 ¼
ðqð2Þ � qð1ÞÞððqð2ÞÞ2 � 6qð2Þqð1Þ þ ðqð1ÞÞ2Þ

3ðqð2Þ þ qð1ÞÞ3
A4
;

A5 ¼
125ðqð2ÞÞ4 � 1516ðqð2ÞÞ3qð1Þ þ 3118ðqð2ÞÞ2ðqð1ÞÞ2 � 1516qð2Þðqð1ÞÞ3 þ 125ðqð1ÞÞ4

384ðqð2Þ þ qð1ÞÞ4
A5
;

ð84Þ
and the phase speed c is
c2 ¼ qð2Þ � qð1Þ

qð2Þ þ qð1Þ
1þ ðq

ð2ÞÞ2 þ ðqð1ÞÞ2

ðqð2Þ þ qð1ÞÞ2
A2 þ ðq

ð2Þ � qð1ÞÞ2ð5ðqð2ÞÞ2 � 14qð2Þqð1Þ þ 5ðqð1ÞÞ2Þ
4ðqð2Þ þ qð1ÞÞ4

A4

 !
: ð85Þ
Tsuji and Nagata [38] were able to give the expression for the Fourier coefficients of the stream functions in both fluids up to
the fifth-order. Consequently, the velocity and pressure can be calculated from the stream functions. These solutions are
used as the initial values in our codes. Then we turn on the viscosity in both fluids and start the computation. Our main pur-
pose is to have a deep understanding of the decay pattern for the wave amplitude due to viscous damping. To that end, we
consider three choices for the amplitude parameter

(1) a small value A ¼ 0:01;
(2) a moderate value A ¼ 0:1;
(3) a relatively big value A ¼ 0:2.
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The interface profiles from the numerical simulation of viscous Stokes waves at t ¼ 0 and t ¼ 20T , where T is one wave period, with qð1Þ ¼ 0:0012;
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We also consider two choices for the viscosities:

(1) The typical air–water case with qð1Þ ¼ 0:0012; lð1Þ ¼ 1:8� 10�4; qð2Þ ¼ 1:0; lð2Þ ¼ 1:1� 10�2.
(2) An artificial case where the densities are the same with, but the viscosities are 10 times bigger than, the air–water

case. Specifically, qð1Þ ¼ 0:0012; lð1Þ ¼ 1:8� 10�3; qð2Þ ¼ 1:0; lð2Þ ¼ 1:1� 10�1.

The spatial domain of computation is the same as defined in (82) but with H large enough so that it reasonably represents
two layers of infinite thickness, which is the case considered in most previous work. We perform the computation from s ¼ 0
until s ¼ 20T , where T is one wave period. Figs. 1 and 2 show the wave profiles at s ¼ 0 and s ¼ 20T for A ¼ 0:01;0:1 and the
Table 5
Decay rates in the air–water case for three choices of the amplitude parameter A. Results indicate that the decay rate for the mode Ak is approximately k times
that for A1. This pattern is distinct from the linear case.

Mode Linear case A ¼ 0:01 A ¼ 0:1 A ¼ 0:2

A1 �8:03� 10�4 �8:05� 10�4 �8:15� 10�4 �9:33� 10�4

A2 �3:00� 10�3 �1:55� 10�3 �1:66� 10�3 �1:82� 10�3

A3 �6:53� 10�3 �2:27� 10�3 �2:51� 10�3 �2:80� 10�3

A4 �1:14� 10�2 �2:99� 10�3 �2:99� 10�3 �2:83� 10�3

A5 �1:75� 10�2 �3:71� 10�3 �3:70� 10�3 �4:48� 10�3

Table 6
Decay rates in the case with 10 times bigger viscosities, for three choices of the amplitude parameter A. Results again show that the decay rate for the mode Ak

is approximately k times that for A1, a pattern distinct from the linear prediction.

Mode Linear case A ¼ 0:01 A ¼ 0:1 A ¼ 0:2

A1 �7:04� 10�3 �7:05� 10�3 �7:09� 10�3 �7:15� 10�3

A2 �2:68� 10�2 �1:40� 10�2 �1:43� 10�2 �1:45� 10�2

A3 �5:82� 10�2 �2:10� 10�2 �2:16� 10�2 �2:20� 10�2

A4 �1:00� 10�1 �2:83� 10�2 �2:86� 10�2 �2:81� 10�2

A5 �1:52� 10�1 �3:57� 10�2 �3:59� 10�2 �3:52� 10�2
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Fig. 3. Comparison between the inviscid solution and the numerical viscous solution of the Stokes wave with qð1Þ ¼ 0:0012;
lð1Þ ¼ 1:8� 10�4; qð2Þ ¼ 1:0; lð2Þ ¼ 1:1� 10�2 and the amplitude parameter A ¼ 0:01. The numerical solution is displayed from s ¼ 0 and for every
period, T , until s ¼ 20T . (a) Modes jA2j versus jA1j; (b) modes jA3j versus jA1j; (c) modes jA4j versus jA1j; (d) modes jA5j versus jA1j.
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Fig. 4. Comparison between the inviscid solution and the numerical viscous solution of the Stokes wave with qð1Þ ¼ 0:0012;
lð1Þ ¼ 1:8� 10�3; qð2Þ ¼ 1:0; lð2Þ ¼ 1:1� 10�1 and the amplitude parameter A ¼ 0:01. The numerical solution is displayed from s ¼ 0 and for every
period, T , until s ¼ 20T . (a) Modes jA2j versus jA1j; (b) modes jA3j versus jA1j; (c) modes jA4j versus jA1j; (d) modes jA5j versus jA1j.
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Fig. 5. Comparison between the inviscid solution and the numerical viscous solution of the Stokes wave with qð1Þ ¼ 0:0012;
lð1Þ ¼ 1:8� 10�4; qð2Þ ¼ 1:0; lð2Þ ¼ 1:1� 10�2 and the amplitude parameter A ¼ 0:1. The numerical solution is displayed from s ¼ 0 and for every period,
T , until s ¼ 20T. (a) Modes jA2j versus jA1j; (b) modes jA3j versus jA1j; (c) modes jA4j versus jA1j; (d) modes jA5j versus jA1j.
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Fig. 6. Comparison between the inviscid solution and the numerical viscous solution of the Stokes wave with qð1Þ ¼ 0:0012;
lð1Þ ¼ 1:8� 10�3; qð2Þ ¼ 1:0; lð2Þ ¼ 1:1� 10�1 and the amplitude parameter A ¼ 0:1. The numerical solution is displayed from s ¼ 0 and for every period,
T , until s ¼ 20T . (a) Modes jA2j versus jA1j; (b) modes jA3j versus jA1j; (c) modes jA4j versus jA1j; (d) modes jA5j versus jA1j.

|A1|

|A
2|

0.18 0.19 0.2
0

0.02

0.04

0.06

0.08 Inviscid solution
Numerical solution

|A1|

|A
3|

0.18 0.19 0.20

0.002

0.004

0.006

0.008 Inviscid solution
Numerical solution

|A1|

|A
4|

0.18 0.19 0.20

0.0005

0.001

0.0015

0.002 Inviscid solution
Numerical solution

|A1|

|A
5|

0.18 0.19 0.2
0

0.0002

0.0004

0.0006 Inviscid solution
Numerical solution

a b

c d

Fig. 7. Comparison between the inviscid solution and the numerical viscous solution of the Stokes wave with qð1Þ ¼ 0:0012;
lð1Þ ¼ 1:8� 10�4; qð2Þ ¼ 1:0; lð2Þ ¼ 1:1� 10�2 and the amplitude parameter A ¼ 0:2. The numerical solution is displayed from s ¼ 0 and for every period,
T , until s ¼ 20T . (a) Modes jA2j versus jA1j; (b) modes jA3j versus jA1j; (c) modes jA4j versus jA1j; (d) modes jA5j versus jA1j.
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two choices of the viscosities, respectively. One can clearly see the decay of the wave amplitude. In the case of bigger vis-
cosities (Fig. 2), the wave decays faster than in the air–water case (Fig. 1). Moreover, with the same viscosities the decay rate
is approximately the same for the two choices of A. Clearly each Fourier mode of the wave, Ak, is dependent on the temporal
variable s and we use AkðsÞ to indicate such a dependence. To perform a quantitative study, we define the decay rate, r̂ðkÞ,
for each mode Ak through the relation
Fig.
qð1Þ ¼ 0
for ever

Fig. 9
qð1Þ ¼ 0
solution
A ¼: 0:0
AkðsÞ ¼ Akð0Þer̂ðkÞs: ð86Þ
The value of r̂ðkÞ is numerically calculated by
r̂ðkÞ ¼ LnðAkð20TÞÞ � LnðAkð0ÞÞ
20T

; ð87Þ
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8. Comparison between the inviscid solution and the numerical viscous solution of the Stokes wave with
:0012; lð1Þ ¼ 1:8� 10�3; qð2Þ ¼ 1:0; lð2Þ ¼ 1:1� 10�1 and the amplitude parameter A ¼ 0:2. The numerical solution is displayed from s ¼ 0 and
y period, T , until s ¼ 20T . (a) Modes jA2j versus jA1j; (b) modes jA3j versus jA1j; (c) modes jA4j versus jA1j; (d) modes jA5j versus jA1j.
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where Ln is the natural logarithm function. We calculate the decay rate for each of the first five Fourier modes and compare
that with the value in the purely linear case, i.e., the real part of rðkÞ as determined by Eq. (78). The comparison is made in
dimensionless units and the results are shown in Tables 5 and 6, respectively.

We see that the decay rate for the mode A1 is close to that in the linear case, the smaller the A, the smaller the difference.
Even when A ¼ 0:2, the decay rate is only about 10% different from the linear prediction. But the most notable feature of the
pattern is that the decay rate r̂ðkÞ for the kth mode is approximately r̂ðkÞ ¼ kr̂ð1Þ, at least for k ¼ 1;2; . . . ;5. These values are
distinct from the linear predictions and suggest that nonlinear interactions remain important during the viscous damping of
the wave. There is a single disagreement with this pattern in Table 5, the decay rate of the fourth mode when A ¼ 0:2. There
are several possibilities for this discrepancy, but we will delay discussion of it until after we view the results from a different
perspective.

Tables 5 and 6 give the average decay rate over a time interval. We now want to study the decay pattern for each mode in
detail. From the expansion formula (84) we know the analytic relationship between these modes. For the inviscid case, the
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Fig. 10. The vorticity contours with the amplitude parameter A ¼ 0:1 for the two choices of viscosities: (a) qð1Þ ¼ 0:0012; lð1Þ ¼ 1:8� 10�4;

qð2Þ ¼ 1:0; lð2Þ ¼ 1:1� 10�2; (b) qð1Þ ¼ 0:0012; lð1Þ ¼ 1:8� 10�3; qð2Þ ¼ 1:0; lð2Þ ¼ 1:1� 10�1.



J. Wang, G. Baker / Journal of Computational Physics 228 (2009) 5470–5489 5487
results in (84) suggest one way to view the family of Stokes waves is to consider the curves jAkjðjA1jÞ. Then the effects of vis-
cosity can be studied by viewing the deviation of the numerical results from these curves.

We draw the curves by using (84) for the modes jA2j versus jA1j; jA3j versus jA1j; jA4j versus jA1j; jA5j versus jA1j, etc., and
refer to these curves as inviscid solutions. On the other hand, we have the numerical solutions which give the time evolution
for the amplitude of each mode. We can plot these amplitudes in the same way as jA2j versus jA1j; jA3j versus jA1j; jA4j versus
jA1j; jA5j versus jA1j, etc. In Figs. 3–8, we compare the numerical solutions for the three choices of the amplitude parameter A
and the two choices of the viscosities to the analytic inviscid solutions. The numerical solutions are plotted from s ¼ 0 and
for every period, T , until s ¼ 20T. Figs. 3, 5 and 7 give the results in the air–water case for A ¼ 0:01, 0.1, 0.2, respectively. Figs.
4, 6 and 8 give the results in the case with 10 times bigger viscosities for A ¼ 0:01, 0.1, 0.2, respectively. These results, to-
gether with results for the decay rates, suggest a very clear interpretation: viscous effects simply reduce the magnitude
of the Stokes wave while allowing it to remain a member of the family. Without viscosity, A is fixed. With viscosity it is
reduced while maintaining the ratio of the amplitudes. These results agree with the asymptotic expansion for viscous Stokes
waves proposed in [40].
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The evidence is strongest for A ¼ 0:01 and A ¼ 0:1. For A ¼ 0:2, there is a deviation in the pattern for A4 and A5 but it is
confined to the first a few periods of the motion. The reason is that our initial conditions correspond to the inviscid Stokes
wave where the tangential velocities are discontinuous but the pressure is continuous across the interface. As soon as the
computation is started in the presence of viscosity, boundary layers form to ensure the velocities become continuous and
the stresses become important in the balance of pressure across the interface. When the wave amplitude is big, like
A ¼ 0:2, such an adjustment from the inviscid solution to the viscous solution can affect the fourth and fifth digits of the
numerical results. Since this spontaneous adjustment is relatively small, it is observed in the fourth and fifth modes where
amplitudes are of comparable size to the adjustments. The numerical results show that the deviation in the pattern of ampli-
tudes quickly dies away and the Stokes wave is fully restored, albeit at a smaller amplitude. This is also indicated by the case
with bigger viscosities (see Fig. 8) where the modes decay much faster and the numerical solution and the inviscid solution
show pretty good agreement when s P 10T.

One more evidence is provided in Fig. 9, where we match the numerical solutions of viscous Stokes waves at s ¼ 20T by
using some analytic solutions from inviscid Stokes waves. The air–water case is considered and two choices for the initial wave
amplitude are made: A ¼ 0:01 and 0.1. From the numerical solutions we are able to obtain the magnitude of the mode A1 at
s ¼ 20T in both cases, which are approximately 0.009038 and 0.09031, respectively. Then we set the amplitude parameter
A to be these two numbers, respectively, and substitute A into the expansion (83) to obtain an inviscid solution. The numerical
solutions and the inviscid solutions are plotted for both cases in Fig. 9 and we find excellent agreement between them.

We mention again that surface tension is not considered in our numerical study of Stokes waves. In the presence of cap-
illary effects, waves will typically develop sharp corners [44,45] which clearly breaks the pattern of Stokes waves. However,
such capillary effects are significant only for very short waves (with large wave numbers). For waves with small or moderate
wave numbers, gravity and viscosity dominate and surface tension can be reasonably neglected [40,44].

Finally we plot the vorticity contours in Fig. 10 for A ¼ 0:1 and with the two choices of viscosities. We see that the viscous
boundary layers are well resolved. In both cases the vorticity in the upper fluid is dominant and the maximal value of the
vorticity occurs near the interface. In the air–water case, there is only a very thin layer of vorticity in the lower fluid. In
the other case, the vorticity is much weaker due to the bigger viscosities but extends further into the fluid away from the
interface. To have a closer look at the vorticity distribution in the lower fluids, we zoom in the vorticity contours in the lower
domain for both cases and present the enlarged pictures in Fig. 11.

4. Conclusions

We have developed a numerical algorithm which ensures an accurate representation of the viscous interfacial motion,
and which enables us to perform direct numerical simulation to Navier–Stokes equations with moving interfaces. This meth-
od allows us to treat viscosity jumps and large density ratios (about 1000 to 1 in the water–air case) without introducing
unnecessary numerical smoothing. It is thus capable of capturing the very thin boundary layers at an evolving interface
in slightly viscous fluids. The method achieves spectral accuracy in the horizontal direction, and fully second-order accuracy
in the time marching and the vertical direction, for both the velocity and pressure. One important feature of this algorithm is
that it can be easily adapted to parallel computing, making large-scale simulations possible.

There are several possible ways to make refinements for this algorithm. For example, more delicate mapping techniques
[20] can be applied if it is necessary to consider situations where the interfaces fail to be single-valued, though this is not a
concern in our current study focused on viscous effects. Higher-order time-marching methods [2] and boundary value prob-
lem solvers [3] can be employed to further improve the accuracy if needed. Although we have restricted our attention to
two-dimensional flows in this paper, there is no inherent difficulty in adding to our numerical formulation another horizon-
tal direction, say Y, especially if periodicity is assumed. In that case, the Fourier transform will be applied in both X and Y
directions, which still leads to an ODE system in the form of (55) that can be similarly solved by identifying growing and
decaying solutions.

With the algorithm presented in this paper, Stokes waves can be followed sufficiently in time for an accurate study of the
viscous effects on wave motion. Our numerical results are consistent with the asymptotic expansion for viscous Stokes
waves proposed in [40]. Our future plan is to apply this algorithm to numerically study the generation of water waves (such
as sea surface waves) by wind forcing, and investigate the role of viscosity in the processes of wind–water interaction.
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